Inevitable Nipple Analogy

A genetic theory of homosexuality.

The article reports on recent work (pdf) addressing the ‘if homosexuality is genetic, why hasn’t it died out?’ debate, which suggests that the ‘gene for male homosexuality persists because it promotes—and is passed down through—high rates of procreation among gay men’s mothers, sisters, and aunts‘.

In other words, gayness in men can be as natural and as the male nipple, even if both are initially puzzling when thought of in evolutionary terms. OK I’m stretching things slightly, but I can’t help but wonder whether the nipple analogy might be a good basis for informal arguments for a bit more tolerance:

Let He Who is Without Nipples Cast the First Stone?

Or maybe not.

More on the Great Nipple Question from straightdope.com; a moment of science; and the evolution-101 blog.

Journals of Negative Results

Via the INDUCTIVE mailing list, I learned of the Journal of Interesting Negative Results in Natural Language Processing and Machine Learning

It is becoming more and more obvious that the research community in general, and those who work NLP and ML in particular, are biased towards publishing successful ideas and experiments. Insofar as both our research areas focus on theories “proven” via empirical methods, we are sure to encounter ideas that fail at the experimental stage for unexpected, and often interesting, reasons. Much can be learned by analysing why some ideas, while intuitive and plausible, do not work. The importance of counter-examples for disproving conjectures is already well known. Negative results may point to interesting and important open problems. Knowing directions that lead to dead-ends in research can help others avoid replicating paths that take them nowhere. This might accelerate progress or even break through walls!

That’s healthy thinking, although the site/project/journal seems very new, not much up there yet. However it does have a page of links to other such journals, events, forums and articles in favour of documenting scientific failures. Listed in there is an upcoming AAA-08 Workshop, What Went Wrong and Why: Lessons from AI Research and Applications.

The workshop has its own Web site  with materials from an earlier 2006 event with intriguing abstracts from Douglas Lenat, John McCarthy and others.

The second workshop will continue our analysis of failures in research.  In addition to examining the links between failure and insight, we would like to determine if there is a hidden structure behind our tendency to make mistakes that can be utilized to provide guidance in research.